Characteristic and analysis of silicon germanium material as MEMS pressure sensor

نویسنده

  • S. Maflin Shaby
چکیده

The silicon based pressure sensor is one of the major applications of the piezoresistive sensor. This paper focuses on the structural design and optimization of the MEMS piezoresistive pressure sensor to enhance the sensitivity. A finite element method (FEM) is adopted for designing the performance of a silicon based piezoresistive pressure sensor. Thermal as well as pressure loading on the sensor is applied to make a simulation results. In order to achieve better sensor performance, a parametric analysis is performed to evaluate the system output sensitivity of the pressure sensor. The design parameters of the pressure sensor include the location of piezoresistors and the new structural material used for designing of the piezoresistors in the membrane is poly-Silicon Germanium in which germanium is about 60%. The findings depict that proper selection of the piezoresistors location and the new structural material of the piezoresistors in the membrane can enhance the sensor sensitivity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytical Approach for Vibration Analysis of a Microsensor with Two layers of Silicon and Piezoelectric based on MCST

The vibration analysis is an important step in the design and optimization of microsensors. In most of the cases, COMSOL software is employed to consider the size-dependency on the dynamic behavior in the MEMS sensors. In this paper, the Modified Couple Stress Theory (MCST) is used to capture the size effect on dynamic behavior in a microsensor with two layers of the silicon and piezoelectric. ...

متن کامل

HIGH SENSITIVE ABSOLUTE MEMS CAPACITIVE PRESSURE SENSOR IN SiGeMEMS PROCESS FOR BIOMEDICAL APPLICATIONS

A high sensitive CMOS Micro-electro-mechanical rectangular capacitive pressure sensor in SiGeMEMS process (Silicon Germanium Micro-electro-mechanical System process) is designed and analyzed. Polycrystalline Silicon Germanium (Poly-SiGe) having low fatigue and high strength is effectively used as the sensor diaphragm material to achieve better reliability. The designed perforated diaphragm clam...

متن کامل

Heterogeneous material integration for MEMS

This thesis describes heterogeneous integration methods for the fabrication of microelectromechanical systems (MEMS). Most MEMS devices reuse the fabrication techniques that are found in the microelectronics integrated circuit industry. This limits the selection of materials and processes that are feasible for the realization of MEMS devices. Heterogeneous integration methods, on the other hand...

متن کامل

Interconnect Issues for Integrated MEMS Technology

This paper reviews recent progress toward the monolithic, modular integration of microelectromechanical devices (MEMS) with electronics. The interconnect metallurgy poses a thermal budget limit on the processes that can be used to build the MEMS structures after the electronics are completed. In addition, the metal interconnect and inter-metal dielectric layers must be protected during the remo...

متن کامل

A Study of Silicon based MEMS Capacitive Sensor for Absolute Pressure Measurement of a Specific Range

In this paper two MEMS capacitive pressure sensor of two diffident geometries are designed for measurement of absolute pressure. Both of these sensors are designed as parallel plates where one is movable and the other is fixed. The only difference with common parallel plate structure is that one of the movable plates is supported by four anchors with respect to the fixed plate. Here we have con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015